The Cunningham Project
Ongoing project to factor the integers of the form
- $2^n - 1$ for $n < 1500$ odd
- $3^n - 1$ for $n < 900$ odd
- $5^n - 1$ for $n < 600$ odd
- $6^n - 1$ for $n < 550$ odd
- $7^n - 1$ for $n < 500$ odd
- $10^n - 1$ for $n < 450$ odd
- $11^n - 1$ for $n < 400$ odd
- $12^n - 1$ for $n < 400$ odd
- $2^n + 1$ for $n < 1500$ odd
- $3^n + 1$ for $n \le 900$
- $5^n + 1$ for $n \le 600$
- $6^n + 1$ for $n \le 550$
- $7^n + 1$ for $n \le 500$
- $10^n + 1$ for $n \le 450$
- $11^n + 1$ for $n \le 400$
- $12^n + 1$ for $n \le 400$
- $2^n + 1$ for $n = 4k \le 1500$
- $2^n + 1$ for $n = 4k-2 < 3000$
- $3^n + 1$ for $n = 6k-3 < 1800$
- $5^n - 1$ for $n = 10k-5 < 1200$
- $6^n + 1$ for $n = 12k-6 < 1100$
- $7^n + 1$ for $n = 14k-7 < 1000$
- $10^n + 1$ for $n = 20k-10 < 900$
- $11^n + 1$ for $n = 22k-11 < 800$
- $12^n + 1$ for $n = 6k-3 < 800$